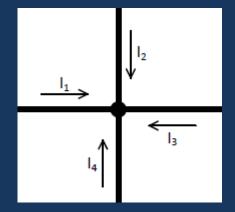
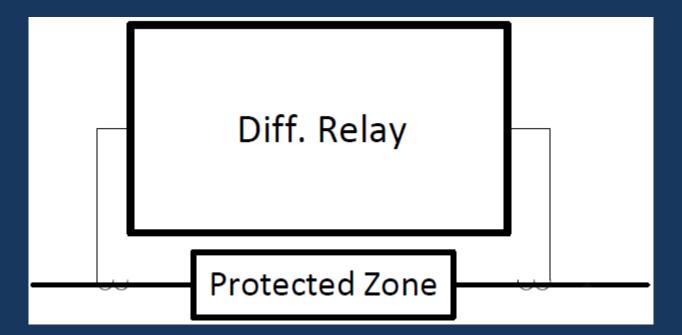
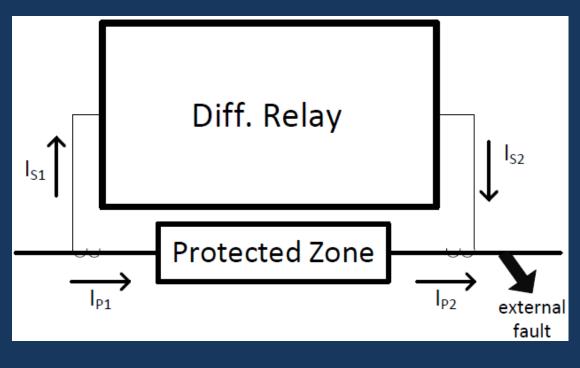
# A Method for Selecting Secure Slopes in Maximum Restraint Type Differential Relays


Mike Reynen Phasor Engineering, Inc.

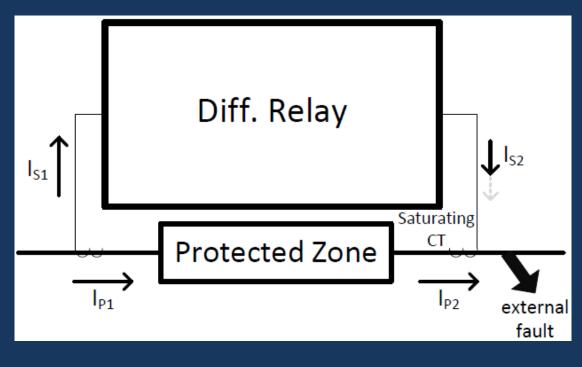

Alin Hasegan, Phasor Engineering, Inc.

• Kirchoff's Current Law:


- Sum of all currents entering a node is zero

$$I_1 + I_2 + I_3 + I_4 = 0$$





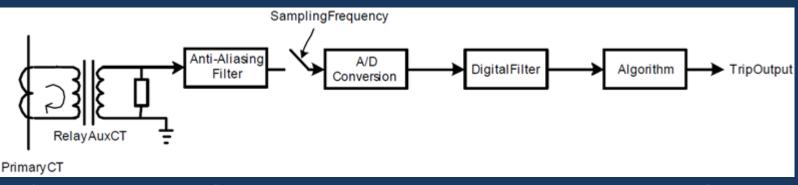

#### Ideal External Fault Case:



 $I_1 + I_2 = 0$ 

External Fault with CT Saturation:




 $I_1 + I_2 \neq 0$ 

#### Percentage Restrained Differential:

 $I_{diff} = I_1 + I_2 + \dots + I_n$ Diff. Relay Operate  $I_{rest \ total} = |I_1| + |I_2| + \dots + |I_n|$ I<sub>diff</sub>=Σ Region Restrain slope Region  $\overline{I_{rest max}} = \max(|I_1|, |I_2|, \cdots, |I_n|)$  $I_{S1}$ rest Saturating CT  $Diff_{op} = \begin{cases} Trip \ if \ \frac{I_{diff}}{I_{rest}} > k\\ No \ Trip \ otherwise \end{cases}$ **Protected Zone**  $I_{P1}$  $I_{P2}$ 

external fault

I<sub>S2</sub>



R. E. Cossé, D. G. Dunn, and R. M. Spiewak, "Ct saturation calculations - are they applicable in the modern world? - part i, the question," IEEE Transactions on Industry Applications, vol. 43, pp. 444–452, March-April 2007.

#### Complicated / time consuming

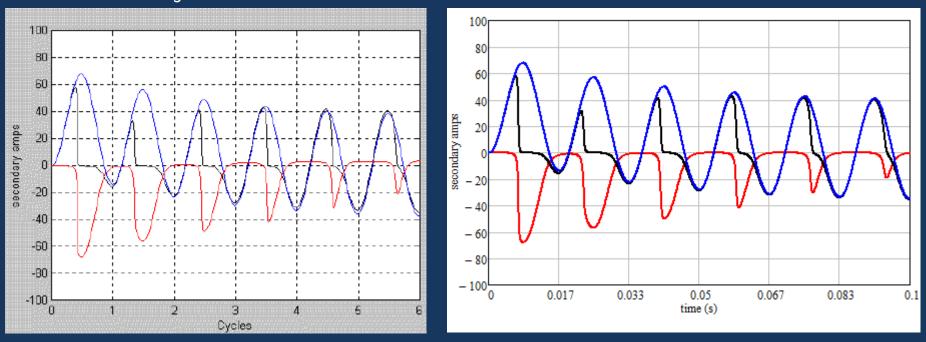
- Need detailed data as inputs (CTs, relay etc.)
- May not be practical
  - Is there an easier way?

• Secure slope as a function of V<sub>s</sub>:

$$k_{total} = 0.824V_s - 0.00242V_s^{-2}$$
where:  $V_s = 20 \times \frac{\left(1 + \frac{X}{R}\right) \frac{I_f}{CTR} Z_{burden}}{V_{rated}(1 - \% Rem)}$ 

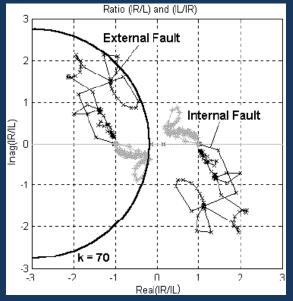
- Straightforward to apply
- In use for many years (proven)
- Valid for total restraint type differential relays
  - What about maximum restraint type?

 Computer simulation of a saturated CT's output used to confirm secure slope formula for total restraint type:

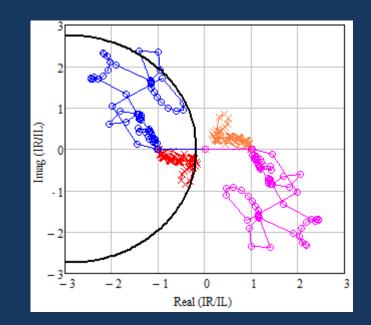

– I=10677A, X/R=14, CTR=2000:5, burden=2Ω,

 $-V_{rated}$ =800, 400, 200 & 100V  $\rightarrow V_{s}$ =20, 40, 80 & 160

- Relay model:
  - 16 samples/cycle
  - cosine filter
  - total restraint

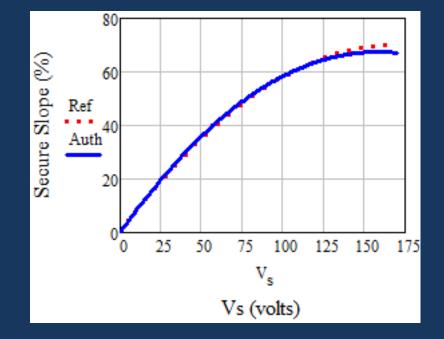

#### - Good agreement with reference result

• V<sub>s</sub>=160 case shown




S. E. Zocholl, "Rating cts for low impedance bus and machine differential applications," in 27th Western Protective Relay Conference, Spokane,WA, October 2000.

#### - Same case transformed on the alpha plane




S. E. Zocholl, "Rating cts for low impedance bus and machine differential applications," in 27th Western Protective Relay Conference, Spokane,WA, October 2000.



 $k_{total} = 0.824V_s - 0.00242V_s^2$ 

$$k_{total}' = 0.852V_s - 0.00269V_s^2$$

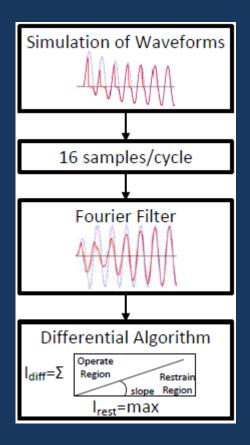


### Maximum Restraint Type

- Similar style of analysis used
- Cases Studied:

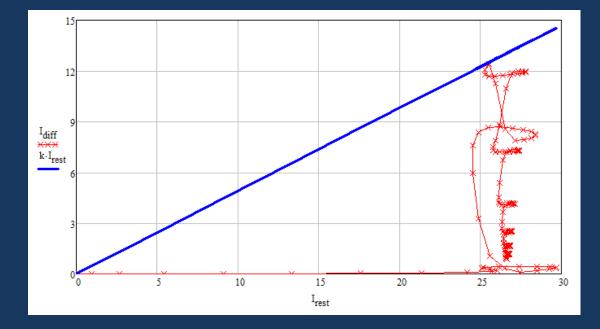
   CTR=2000:5, burden=2Ω, 0% remanance
   Varied I<sub>f</sub>, X/R and V<sub>rated</sub> in turn to achieve
   V<sub>s</sub>=20 160 in steps of 20

#### Maximum Restraint Type


 Relay Model: 16 samples/cycle

FFT used for filtering

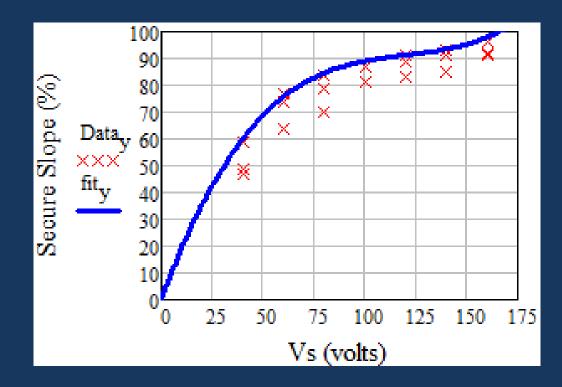
$$I_{diff} = I_1 + I_2$$
  


$$I_{rest} = max(|I_1|, |I_2|)$$
  

$$k = \frac{Idiff}{Irest}$$

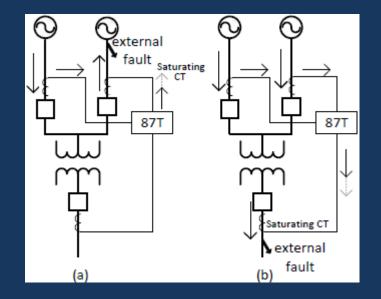


• I=10667A, X/R=14, V<sub>rated</sub>=400V


$$k = \frac{I_{diff}}{I_{rest}} = 49\%$$



|                     | Vrated | $V_s$ | slope (%) |                        | X/R | $V_s$ | slope (%) |
|---------------------|--------|-------|-----------|------------------------|-----|-------|-----------|
|                     | 400    | 40    | 49        |                        | 9   | 40    | 59        |
|                     | 266    | 60    | 74        |                        | 14  | 60    | 77        |
|                     | 200    | 80    | 79        |                        | 19  | 80    | 84        |
| Ipri=10667A, X/R=14 | 160    | 100   | 81        | Ipri=16kA, Vrated=100V | 24  | 100   | 87        |
|                     | 133    | 120   | 83        |                        | 29  | 120   | 89        |
|                     | 114    | 140   | 85        |                        | 34  | 140   | 91        |
|                     | 100    | 160   | 91        |                        | 39  | 160   | 92        |
|                     | Ipri   | $V_s$ | slope (%) |                        |     |       |           |
|                     | 4000   | 40    | 47        |                        |     |       |           |
|                     | 6000   | 60    | 64        |                        |     |       |           |
|                     | 8000   | 80    | 70        |                        |     |       |           |
| X/R=14, Vrated=100V | 10000  | 100   | 81        |                        |     |       |           |
|                     | 12000  | 120   | 91        |                        |     |       |           |
|                     | 14000  | 140   | 93        |                        |     |       |           |
|                     | 16000  | 160   | 96        |                        |     |       |           |


• Max slope for each value of  $V_s$ :

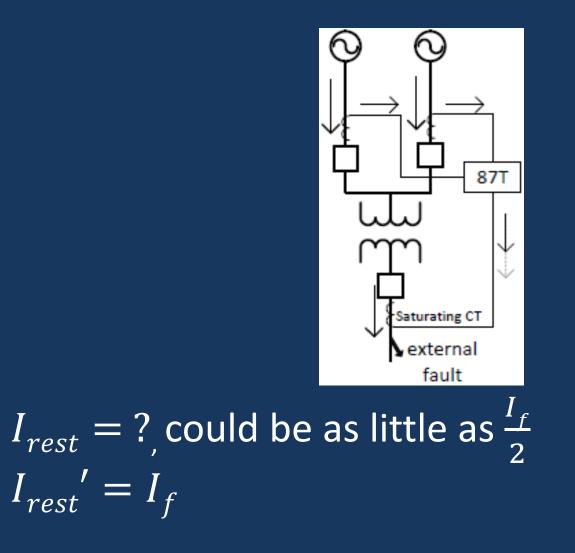
| V <sub>s</sub> | Secure Slope (%) |
|----------------|------------------|
| 40             | 59               |
| 60             | 77               |
| 80             | 84               |
| 100            | 87               |
| 120            | 91               |
| 140            | 93               |
| 160            | 96               |



• Fitted curve:  $k_{max} = 0.000046Vs^3 - 0.0166Vs^2 + 2.09Vs$  for  $V_s \le 160$ 

- Not all max restraint style relays are the same:
  - Filtering method
  - Even restraint calculation itself




(a) 
$$I_{rest} = I_f$$
  
(b)  $I_{rest} = ?$ , could be as little as  $I_f/2$ 

40th Western Protective Relay Conference

#### Consider:

 $I_{rest}' = \max(|I_{s1}|, |I_{s2}|, \cdots, |I_{sn}|, |I_{W1}|, |I_{W2}|, \cdots, |I_{Wm}|)$ 

where:  $|I_{Sn}| = magnitude \ of \ current \ in \ source \ n$  $|I_{Wm}| = magnitude \ of \ current \ in \ winding \ m$ 



### Conclusions

 Formula for secure slope as a function of V<sub>s</sub> for max. restraint type differential relays:

 $k_{max} = 0.000046V_s^3 - 0.0166V_s^2 + 2.09V_s$  for  $V_s \le 160$ 

- Suitable for many common applications

- Care required
  - Not all applications are the same
  - Not all max. restraint type differentials are the same

40th Western Protective Relay Conference

#### Questions?